

Marine Lubricants – Trends and products

Naples May 5th, 2016 – T. Rühle

Legislation

- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Regulatory requirements for Marine Lubes

Two Key regulations in place:

OSPAR – Convention for the protection of the marine environment of the North East Atlantic. Defines applications that can lead to discharge to sea. Black list of prohibited chemicals. Products require approvals -complex test protocols for approvals

EPA with VGP 2013 – Protection of USA Costal Waters. Defines conditions for EALs (mandated for oil to sea interfaces)

Other regions do not have strong environment protection

Process OSPAR Chemical registration

- 1. Complete HOCNF Form
- 2. Submit to CEFAS who will send to OCNS team. (MSDS in English and Dutch)
- 3. OCNS will process data and generate a template and place chemical on definitive ranked list of registered products. Certificate lasts 3 years. Normally takes 8 weeks to process from submission of forms.

Data Needed

OSPAR

- 1. Full chemical name, molecular weight, CAS #, EINECS/ELINCS/REACH registration number
- Biodegradability & Bioaccumulation (log Pow) data: results of >60% biodegradation in 28 days and Log Pow <3, or Bioconcentration factor (BCF) ≤100 and the molecular weight is ≥700
- 3. Ecotoxicity data results (algae, Crustacean, fish, sediment dweller, expressed as EC50 (Effective concentration) or LC50 (Lethal concentration)

VGP affected Marine Lubricant Market Vessel General Permit Legislation

- The US Environmental Protection Agency (EPA) has published the Vessel General Permit (VGP) which came into force in Dec 2013.
- VGP requires an environmental acceptable lubricants (EAL) for all ship equipment having an interface with seawater and applies to all vessels (>79 feet in length) entering US waters, unless technically infeasible.
- Environmentally acceptable lubricants (EALs) according to VGP definition are lubricants that are
 - Biodegradable: Organization for Economic Co-operation and Development Test Guidelines 301 A-F (>20% but <60% biodegradation after 28 days), 306, and 310, and International Organization for Standardization 14593:1999.
 - Minimally-toxic: means a substance must pass OECD 201, 202, and 203 for acute toxicity testing, or OECD 210 and 211 for chronic toxicity testing: LC50 of fluids must be at least 100 mg/L and the LC50 of greases, two-stroke oils, and all other total loss lubricants must be at least 1000 mg/L
 - Not bio accumulative: means the partition coefficient in the marine environment is log KOW <3 or >7 using test methods OECD 117 and 107, molecular mass > 800 Daltons, molecular diameter >1.5 nanometer, BCF or BAF is <100 L/kg, using OECD 305, OCSPP 850.1710 or OCSPP 850.1730, or a field-measured BAF or polymer with MW fraction below 1,000 g/mol is <1%.</p>
- Alternatively, lubricants that are labelled under OSPAR, Blue Angel, European Eco label, Nordic Swan and Swedish Standard SS155470 are regarded as acceptable EALs.

• Legislation

Suitable base stocks for marine lubricants

- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

VGP affected Marine Lubricant Market Vessel General Permit Legislation

- EALs are required for all ship equipments having an interface with seawater. The VGP specifically identifies applications that have the potential for an oil-to-sea interface as:
 - ✓ Stern Tubes
 - ✓ Controllable Pitch Propeller
 - ✓ Thruster Hydraulic Fluids
 - ✓ Paddle Wheel Propulsion
 - ✓ Thruster Bearings
 - ✓ Stabilizers
 - ✓ Rudder Bearings
 - ✓ Azimuth Thrusters
 - ✓ Propulsion Pod Lubrication
 - ✓ Wire Rope
 - ✓ Mechanical equipment subject to immersion (e.g. dredges, grabs, etc)
- Synthetic esters are the main base oils used in the EAL formulations:
 - ✓ Unsaturated oleate ester,
 - Saturated polyol ester.
 - Saturated diester

Examples Esters for Marine Lubricants Base Stocks

Application:

Market:

Customer Industry:

Marine Industry Global

Applications with oil-to-see interface

Differentiation potential

- Friendly EHS profile
- Superior lubrication performance
- Excellent resistance to oxidation
- Good hydrolytic stability
- Good low temperature performance
- Broad range of available viscosities

Sustainability performance

- Reduces negative impact on the aquatic environment
- Excellent biodegradability (ultimately/readily biodegradable)
- Low aquatic toxicity and high renewable content of >90%
- Enables EU Ecolabel and OSPAR listing for formulated lubricants
- Fulfill EPA requirements defined under Vessel General Permit (VGP)

Resource Efficiency

We create chemistry

High performance esters for environmentally acceptable lubricants for the marine industry

Influence of Hydraulic Fluids on the Energy Efficiency

Source: Bosch Rexroth

Wirkungsgraduntersuchung Otto, Theissen RWTH Aachen IFAS

- Legislation
- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Example: Lubricant Additives for Marine Lubricants

					EEL Categories			
	Hydraulic Product rings by see	Greases	<u>Additives</u>	I: Hydraulic fluids and tractor transmission oils	II: Greases and stern tube greases	III: Stern tube oils chainsaw oils, concrete release agents, wire rope lubricants and other total loss lubricants	IV: Two-stroke oils	V: Industrial and marine gear oils
CPP Fluids	Sterntube Stabiliser Lubricants Lubricants	Thruster Lubricants	Antioxidans					
			Phenolic Antioxidants	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Aminic Antioxidants	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Antioxidant blends	V		\checkmark	\checkmark	\checkmark
			Secondary antioxidants	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
				Antiwear additi	ves			
			Alkylphosphites	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Thiophosphonates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Dithiophosphates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	* * *		Amine dithiophosphates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	* 6 *		Alkylphosphates	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	1 C 1		EP additives					
	* * *		Sulphurized esters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Sulphurized triglycerides	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	EU		Sulphurized olefines	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Faalahal		Corrosion inhibitors					
	генаны		Succinic acid esters	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	LUUIUDUI		Sarcosine	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	www.ecolabel.eu	1	Amine neutralized phosphoric acid ester	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
http://ww	vam.uva.nl/wp-content/uploads/2014/11/LuSC-list-30062015-no-track.pd		Metal Deactivators					
			Benzotriazoles	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Tolyltriazoles	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Thiadiazoles	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Industrial Additive Packages					
			Circulating oil package	V	V	V	V	V

Turbine oil packages

Example: Interaction of Corrosion Inhibitors in an Ester Base Stock

Ester molecules

corrosion inibitor molecules metal surface Rust-Preventing characteristics in the presence of synthetic sea water (DIN 7120 B) (Treat rate to pass the test) 1600 1400 Corrosion Inhibitor A 1200 Treat Rate, ppm Corrosion Inhibitor B 1000 800 600 400 200 0 Grp. I Grp. II Grp. III Grp. IV Grp. V

We create chemistry

Source: T. Rühle. M. Hof, S. Seibel: A new corrosion inhibitor with unique performance advantages for industrial lubricant applications. Proceedings of the OilDoc Conference & Exhibition 2013, Rosenheim 22. -24.01.2013.

- Legislation
- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Marine Cylinder Oils: Neutralization of Sulphuric Acid by overbased Detergents

Mechanism of neutralization reaction in lubricating oil.

Visualized crystals in the neutralization reaction.

🗖 🗖 BASE

We create chemistry

Source:

Rong Chang Wu, Kyriakos D. Papadopoulos, Curt B. Campbell: "Visualization Test for Neutralization of Acids by Marine Cylinder Lubricants" in: AIChE Journal September 1999 Vol. 45, No. 9, 2011.

Marine Cylinder Oils: Effect of Deposits

Surface trace of typical liner surface. (a) without deposit (b) same surface with deposit.

Source:

Øyvind Buhaug: "Deposit formation on cylinder liner surfaces in medium-speed engines", Faculty of Engineering Science and Technology, Norwegian University of Science and Technology. Trondheim, Sept 15, 2003

Marine Cylinder Oils: Effect of Deposits

Figure 2 Lubricating oil consumption in engines with liner deposits

Source:

Øyvind Buhaug: "Deposit formation on cylinder liner surfaces in medium-speed engines",

Faculty of Engineering Science and Technology, Norwegian University of Science and Technology. Trondheim, Sept 15, 2003

Examples A new widely available Group V technology

We create chemistry

Market information

Application:	Top tier automotive & industrial lubricants		
	Marine cylinder lubricants		
Customer Industry:	Various		
Market:	Global		

Differentiation potential

- Supply security: several production sites worldwide plus complete backwards integration into all raw materials (already established world scale capacity)
- Performance Benefits:
 - Outstanding thermal and hydrolytic stability
 - Superior cold temperature properties
 - Low coefficient of friction
 - Cleaner operation offering less deposits

Sustainability performance

- Friction reduction offering a potential for energy efficiency
- Sustainable supply security via backwards integrated raw materials

A novel fully saturated high performance ester base stock technology for various applications

- Legislation
- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Examples Premium Bio Hydraulic Fluid

Market information

Ar	onli	icat	tio	n:

(Marine) Hydraulic fluids

Customer Industry: Various

Market:

Global

Differentiation potential

- OEM Approvals:
 - Bosch Rexroth RD90221-1
 - Eaton Vickers 35VQ25 / 104C
 - HAWE Hydraulic
 - ZF TE-ML 07G
 - Voith Turbo gears list 120.00059010 (ISO-VG 32)
- Standards:
 - DIN ISO 15380

ProEco HE 801

Sustainability performance

- Reduces negative impact on the aquatic environment
- Excellent biodegradability (ultimately/readily biodegradable)
- Low aquatic toxicity
- Enables OSPAR listing

Resource Efficiency

Biodegradable hydraulic oil based on saturated synthetic esters HEES

Health and Safety Rei

Renewables

Oxidation Test – Dry TOST – ISO 4263-3

xygen Steel-Wire Wire

D - BASF

- Legislation
- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Examples: A New Renewable Biopolymer as Lubricant Additive

Market information

Application:	Industrial lubricants
	Marine lubricants
Customer Industry:	Various
Market:	Global

Differentiation potential

- Performance Benefits:
 - Outstanding shear stability
 - Outstanding thermal stability
 - Outstanding thickening efficiency
 - Reduction of wear and friction

Sustainability performance

- Reduces negative impact on the aquatic environment
- Excellent biodegradability
- Low aquatic toxicity and renewable content of 100%
- Enables EU Ecolabel and OSPAR listing for formulated lubricants

Biodegradability

Efficiency

🗖 🗖 BASE

We create chemistry

New Biopolyme

Sulphonated PAAM

PAAM

7

Shear stability

Time of shear / min.

2 3

Renewables

- Legislation
- Suitable base stocks for marine lubricants
- Suitable additives for marine lubricants
- Example: Marine cylinder oils
- Examples: Biohydraulics
- Example: A new renewable biopolymer as lubricant additive
- Summary and Conclusions

Summary and Conclusions

- Regulations trigger the increased use of biolubricants: OSPAR and VGP
- The most relevant base stocks are synthetic esters
- For esters base stocks, potential interactions with surface active additives should be considered
- MCL: calcium based deposits are a problem use of metal free dispersants/cosolvents?
- Biohydraulic fluids with a premium technical performance are available for marine applications
- Future: Use of biobased additives ?

